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Abstract—The expansion of computer science (CS) education
in K–12 and higher-education in the United States has prompted
deeper engagement with equity that moves beyond inclusion to-
ward a more critical CS education. Rather than frame computing
as a value-neutral tool, a justice-centered approach to equitable
CS education draws on critical pedagogy to ensure the rightful
presence of political struggles by emphasizing the development of
not only knowledge and skills but also CS disciplinary identities.
While recent efforts have integrated ethics into several areas
of the undergraduate CS curriculum, critical approaches for
teaching data structures and algorithms in particular are un-
dertheorized. Basic Data Structures remains focused on runtime-
centered algorithm analysis.

We argue for affordance analysis, a more critical algorithm
analysis based on an affordance account of value embedding.
Drawing on critical methods from science and technology stud-
ies, philosophy of technology, and human-computer interaction,
affordance analysis examines how the design of computational
abstractions such as data structures and algorithms embody affor-
dances, which in turn embody values with political consequences.
We illustrate 5 case studies of how affordance analysis refutes
social determination of technology, foregrounds the limitations
of data abstractions, and implicates the design of algorithms in
disproportionately distributing benefits and harms to particular
social identities within the matrix of domination.

Keywords—abstractions, affordances, algorithms, critical peda-
gogy, computing education, data structures, design justice, ethics,
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Current discourse around CSforAll and broadening participa-
tion in computing frame “equity as inclusion” [6, 28], calling for
an extension of access to a high-quality computing education
as a fundamental right for all students. “However, are we
satisfied with everyone learning to code, if the end game
is to produce (admittedly more ‘diverse’) coders who will
primarily work to ensure the continued profitability of capitalist
start-ups and technology giants?” [9]. Computing education
has traditionally positioned computing as value-neutral and
more interested in efficiency and business profit than “do[ing]
something good” [16, 19, 28, 29]. This approach reinforces the
dominant narratives about the apolitical disciplinary identity of
computer science and reproduces systems of oppression that
dehumanize and invalidate marginalized students’ experiences
and perspectives [3, 6, 19, 25, 29].

Technologies embody social relations and political power [9,
15, 31]. A more equitable computer science (CS) education
thus requires a more critical CS education that “recognizes

computing is not an unequivocal social good” [14] and centers
the “rightful presence” of political struggles: the “fraught
histories” and “concrete injustices” experienced by students in
the computing classroom [6, 25]. “To move toward a justice-
centered approach to equity, Vakil argues, we must simulta-
neously attend to at least three features of CS education: the
content of curriculum, the design of learning environments, and
the politics and purposes of CS education reform.” Specifically,
Ko et al. define three ideas for a more critical CS education: that
computing has limits, data has limits, and CS has responsibility.

Recent efforts to design a more critical CS education
in higher education include standalone ethics courses [11,
24]; ethics integrated across the undergraduate computing
curriculum [8, 13]; and integrated ethics in specific courses such
as machine learning [26], human-centered computing [27], and
introductory CS [10, 12]. In emphasizing the unjust distribution
of benefits and harms caused by algorithmic decision-making
systems, these efforts reflect a recent turn toward a structural and
systemic analysis of computing injustices that “explore ethics
in relation to institutions, societies, ideology, or epistemological
perspectives in CS rather than a focus on the ‘good’ and ‘bad’
decisions individual actors make in their interactions with
technology” [28].

“Both [the machine learning and mechanism design com-
munities] have been heeding the call for attention to values,
politics, and ‘social good’ more generally, holding more than
twenty technical workshops and conferences between them on
some variation of fairness, bias, discrimination, accountability,
and transparency in the last five years” [2]. Similarly, social
scientists have begun studying algorithms as opaque “black
boxes” that require “a range of methodological strategies in
order to bypass these layers of impenetrability and document
the inner working of computational systems” [7]. However, it
is less clear how these efforts might translate to data structures
and algorithms: the study of computational abstractions under-
pinning such systems. Critically, methods that treat systems
as black boxes will not implicate the design of data structures
and algorithms toward the system’s decision-making, values,
and outcomes. Far from studying a black box system, the study
of data structures and algorithms is uniquely positioned in the
undergraduate CS curriculum to enable critical examination
of the inner workings of computational systems in order to
address the question, “Do abstractions have politics?”978-1-6654-4905-2/21/$31.00 ©2021 IEEE



ASYMPTOTIC ANALYSIS

A survey and expert panel study conducted by Porter et al.
identified the following learning goals for Basic Data Structures.

1) Analyze runtime efficiency of algorithms related to data
structure design.

2) Select appropriate abstract data types for use in a given
application.

3) Compare data structure tradeoffs to select the appropriate
implementation for an abstract data type.

4) Design and modify data structures capable of insertion, deletion,
search, and related operations.

5) Trace through and predict the behavior of algorithms (including
code) designed to implement data structure operations.

6) Identify and remedy flaws in a data structure implementation
that may cause its behavior to differ from the intended design.

These learning goals present a unique challenge for designing
a more critical data structures and algorithms course. “Abstract
data types were introduced as a way of freeing a programmer
from concern about irrelevant details in his use of data abstrac-
tions” [17], divorcing information—and the values embodied
therein—from the data structures and algorithms that organize
them [19]. Rather than examine the applications of impacts
data structures and algorithms on society, Basic Data Structures
focuses on examining their efficiency: algorithm analysis is
defined as “[r]untime analysis and/or space complexity” [23]
using asymptotic notation, such as Big O notation.

Algorithm design and implementation is thus a means of
realizing a specification or abstract data type without critically
questioning the design of the abstraction [9, 19]. Design issues
and tradeoffs are narrowly framed in terms of code behavior
and program efficiency rather than design justice—“design that
is led by marginalized communities and that aims explicitly to
challenge, rather than reproduce, structural inequalities” [9]. The
rightful presence of political struggles in the data structures and
algorithms classroom is predicated on a more critical algorithm
analysis that examines the values embodied in data structures
and algorithms (and applications thereof).

AFFORDANCE THEORY

Affordance analysis is an alternative algorithm analysis
that draws on science and technology studies, philosophy
of technology, and human-computer interaction to examine
how computational abstractions such as data structures and
algorithms embody affordances. Affordances are relational
properties of objects that make “specific outcomes more likely
given the circumstances provided that the subject aims to bring
about these outcomes” [15]. For example, “a chair affords
sitting, a doorknob affords turning, a mouse affords moving
the cursor on the screen and clicking at a particular location,
and a touchscreen affords tapping and swiping” [9].

The affordance account of value embedding is a theory for
understanding how technological artifacts embody moral values
[15]. Affordances are not value-neutral: like the disposition to
act in a certain way, affordances enable outcomes that may be
valuable. An artifact such as an assault rifle has “negative value
because it enables killing in a broad range of circumstances”
[15]. In general, the value of an artifact is determined by the
“actions or events it affords” and their resulting values [15].

AFFORDANCE ANALYSIS

Affordance analysis applies an affordance account of value
embedding toward computational abstractions such as data
structures and algorithms. If these abstractions embody affor-
dances that in turn embody values, abstractions can produce
“consequences logically and temporally prior to any of its
professed uses” [31]. In other words, abstractions have politics
through the values embodied by their affordances.

For engineers aiming to design for value, the affordance
account already indicates a simple recipe: measure which
actions a given artefact makes likely given a context
(for which we can build on social scientific tools) and
then evaluate whether these affordances are legitimately
desirable (for which we have normative ethics). [15]

To identify the affordances of a programming abstraction,
consider its Application Programming Interface (API), which
“lists the affordances that a software entity makes available”
[1]. Data structures often implement abstract data types that
provide common programming interfaces [17]. In Java, a class
or interface defines public methods that afford certain actions.

To evaluate an affordance according to its effects on social
systems and institutions [2, 7, 9, 32], consider Ferreira et al.
History and Context When examining a specific technology, what

are the historical and cultural circumstances in which it emerged?
When was it developed? For what purpose? How has its usage
and function changed from then to today?

Power Dynamics and Hegemony Who benefits from this technol-
ogy? At the expense of whose labor? How is this technology
sold and marketed? What are the economic and political interests
for the proliferation of this technology?

Developing Effective Long-Term Solutions What solutions are cur-
rently being implemented to address this labor/benefit asymme-
try? In what ways do they reinforce or challenge the status quo?
What are the long- and short-term implications of these solutions
and who will benefit from them?

Wong et al. organizes these questions under “infrastructural
speculation, a lens to center and unravel the lifeworlds of
speculative designs,” presenting 8 design tactics to focus on
“the ‘background’ practices surrounding technologies beyond
use, to think about the broad—yet differential—impacts of
infrastructures and contend with questions of institutional
power.” By attending to “the lifeworld of artifacts—the social,
perceptual, and political environment in which they exist,” [32]
affordance analysis implicates the affordances of computational
abstractions such as data structures and algorithms to the
systems they empower and the social futures they create.

To illustrate affordance analysis, we present 5 case studies
for Basic Data Structures. More examples are available online.1

Priority Queues for Content Moderation

A priority queue is an abstract data type where elements are
retrieved according to their associated priority value. A max-
oriented priority queue retrieves highest-priority elements first
while a min-oriented priority queue retrieves lowest-priority
elements first. Social media platforms rely on algorithms to
draw attention to the most engaging user-generated content.

1https://kevinl.info/do-abstractions-have-politics/



In order to manage user-generated content, platforms design
content moderation systems. A content moderation system
might use a priority queue for human moderators to review
flagged content by assigning the priority values according to the
most toxic (severe, obscene, disrespectful, harmful, or otherwise
disengaging) content.

Content moderation plays an understated but integral role in
determining the content shown to users. Affordance analysis re-
veals that content moderation priority ordering embodies value.
For users of the platform—particularly the most marginalized
users—prioritizing moderation for the most toxic content may
not necessarily reduce the most harmful content. Some users
might consider personalized harassment or identity attacks as
more harmful than toxic content identified by a general-purpose
algorithm [18]. For social media hackers who spread misinfor-
mation, the particular way in which content is prioritized can
introduce loopholes with broad political impacts. Even if our
priority values considered misinformation, we might further
question whether misinformation should even be in the same
priority queue as toxic content. Human moderators review
hundreds of submissions everyday, leading to fatigue, mental
health issues, and PTSD-like symptoms. Human moderators
desensitized by repeated exposure to toxic content might find
it harder to flag and remove misinformation.

A priority queue affords access to the highest/lowest priority-
valued elements. Applied toward content moderation, priority
queues optimize for review of certain content, distributing social
power, benefits, and harms according to their priority values.
By attending to the design of the priority queue abstraction,
affordance analysis refutes social determination of technology:
the view that, “What matters is not technology itself, but the
social or economic system in which it is embedded” [31].

Binary Trees for Hiring Decisions

Binary trees are the foundation for data structures such as
binary search trees that implement associative sets and maps
as well as binary heaps that implement priority queues. But
beyond implementing abstract data types, binary trees can also
directly represent hierarchical relationships between elements
in the recursive tree structure such as in a decision tree. A
hiring algorithm could represent its decision-making process as
a binary tree. In this example, each internal node in the binary
tree could represent a hiring question with a yes/no answer
that corresponds to the left/right children, and each leaf node
could represent a final yes/no hiring decision.

A binary tree affords questions that encode hard requirements
for the hiring position because those questions can be answered
with a yes/no answer, but other characteristics might be harder
to represent. It might be hard to say exactly how much
prior experience (or what kind of prior experience) is needed
for the job beyond the core requirements, especially when
there are many candidates with diverse backgrounds. Creating
a more nuanced binary tree hiring decision-making system
requires acknowledging this design constraint throughout the
requirements planning and question design process. A design
that affords yes/no question answers can preclude more open-

ended questions that allow a broader diversity of ways for
a candidate to demonstrate suitability, rather than only the
most prevalent or dominant candidate experiences. By narrowly
prioritizing design for the dominant candidate experiences while
marginalizing others as edge cases, sociotechnical systems risk
exacerbating social injustice.

It’s possible to design a binary tree that is not limited to
yes/no question answers. Just as we can rewrite multiway if/else-
if/else conditionals into nested binary if/else conditionals, we
can represent any multiway tree as a binary tree. But because
binary trees afford binary questions, algorithms that rely on
binary trees may tend toward solutions modeled with purely
binary questions. Affordance analysis suggests that the decision
to represent a hiring algorithm as a binary tree dis-affords
questions incompatible with binary answers.

Autocomplete for Search Engines

Autocomplete is an application feature that helps a user
select valid search results by showing possible inputs as they
type. Wayne (in Parlante et al.) describe Autocomplete-Me, a
simple autocompletion API designed as an assignment for Basic
Data Structures. The Java API provides two key operations: a
constructor that stores the corpus of all possible autocompletion
terms and an allMatches method that returns all terms that
start with the given prefix ordered by descending weight so
that the most important terms appear first.

Our evaluation of these affordances might begin along the
same lines as in Priority Queues for Content Moderation by
critiquing the weight (or importance) ranking. But the use of
autocomplete in the specific context of search engines also
draws attention to more structural issues. In Algorithms of Op-
pression, Noble implicates search engines in reproducing sexist,
racist, or misogynistic ideas through their search suggestions
and results. In 2013, “[t]he Google Search autosuggestions
featured a range of sexist ideas such as the following:

• Women cannot: drive, be bishops, be trusted, speak in church
• Women should not: have rights, vote, work, box
• Women should: stay at home, be slaves, be in the kitchen, not

speak in church
• Women need to: be put in their places, know their place, be

controlled, be disciplined

These associations are exacerbated at the intersection of social
identities. Noble examined the racist and sexist ideas in the
top autocompletion and search results for queries including
“Black girls”, “Latinas”, and “Asian girls”. With the ubiquity of
search engines, such results embody cultural power: its impacts
also extend to people who don’t directly use Google Search.
The value of a computational abstraction is not only in how
it directly affects end users, but also how it affects societal
systems and structures by eroding civil and human rights.

Shortest Paths for Navigation Directions

The single-pair shortest paths problem focuses on finding a
shortest path between two nodes in a graph that minimizes the
sum of the edge weights. Several well-known algorithms have
been invented to solve variants of the shortest paths problem,
including Dijkstra’s algorithm and the A* search algorithm.



Shortest paths algorithms can be used to compute navigation
directions for a mapping application. Consider a road network
represented as an edge-weighted graph where junctions are
nodes and edges are distances (or travel time) along the road
segment between junctions. However, a shortest path is not
necessarily the “best” path. It might not take into account
mode of travel, road grade, or ability of the user. It might route
through local roads not designed to sustain large amounts of
traffic safely, increasing risks to the local neighborhood and
other drivers. For pedestrian walking directions, especially at
night, it might not offer the most well-lit or populated route.
To address these problems, we could modify the edge weights
to better match desired outcomes. But even so, the use of
shortest paths algorithms for navigation directions might mask
more structural issues such as public disinvestment municipal
infrastructure and public transit.

Affordance analysis surfaces how algorithms can implicitly
encode for an imagined default user situated atop the matrix
of domination: “white, male, abled, English-speaking, middle-
class US citizens” [9]. It can make more visible the unequal
distribution of benefits and harms in society as well as highlight
the role algorithms can play toward either reinforcing or
dismantling those relationships [2].

Shortest Paths for Seam Carving

Seam carving is an approach for content-aware image
resizing [4]. Hug (in Parlante et al.) describe Seam Carving as
an assignment for Basic Data Structures. Rather than shrinking
images by scaling the image or cropping-out the edges, seam
carving removes the least-noticeable vertical or horizontal seam,
or path of pixels from top-to-bottom or left-to-right.

Shortest paths algorithms can find a least-noticeable seam
by representing the image as a graph where vertices represent
pixels and edge weights represent the visual difference between
adjacent pixels as defined by an energy function. Since the
energy function defines the visual difference between pixels, it
determines the seams that are selected by the shortest paths
algorithm and then ultimately removed. In their SIGGRAPH
presentation video, Avidan et al. compared different energy
functions on an image of a dark-skinned woman, including 2
functions that erased body parts. Although they recognize how
the “results depend on the given image,” an evaluation of the
role of skin color and gender [5] is notably absent.

Affordance analysis not only attends to the information
erased by abstractions as we’ve seen in the preceding case
studies, but also extends critique to the cultural and epistemic
abstractions of CS education that lead to the production of
anti-political subjects that “acknowledge ethical and political
dimensions” but “divest them from ‘what counts’ as [CS]” [19].

DISCUSSION

Affordance analysis problematizes the study of data struc-
tures and algorithms by centering ethical dilemmas. Computa-
tional abstractions make certain technical solutions more acces-
sible and likely than other solutions. Since these abstractions
embody affordances, and affordances embody values, the choice

of abstraction can lead to differential consequences. Affordance
analysis advances beyond “deep tech ethics” [11] by implicating
the design of abstractions in the outcomes that they produce.
Peck (in Doore et al.) suggests that this experience of design,
evaluation, and critique can lead to ethical reflections: “What
does it mean to design a fair algorithm? What is the human
cost of efficiency? What systemic advantages/disadvantages
are our algorithms [likely] to amplify?”

Affordance analysis offers a more critical algorithm analysis,
one that centers the rightful presence of political struggles by
examining how sociotechnical systems distribute benefits and
harms. Each of the 5 case studies highlighted the implicit and
explicit ways that algorithms structure and reinforce social
relations. By teaching a more critical algorithm analysis, we
not only teach the limits of computation and data [16], but also
support a greater appreciation, understanding, and responsibility
toward equity—a key element of cultural competence [30].

Although affordance analysis considers social relations, it
is inherently limited to the algorithmic components of a
sociotechnical system. Affordance analysis recognizes and
critiques how abstractions embody values, but it provides less
direction for redressing design values and limitations. Costanza-
Chock defines design justice as a frame for rethinking the
“universalizing assumptions behind affordance theory” and
asking “questions about how inequality structures affordance
perceptibility and availability.” To move beyond universaliz-
ing assumptions, affordance analysis must be considered in
dialogue with ecological concerns over how data structures
and algorithms are developed: the design practices, design
narratives, design sites, and design pedagogies that create
contemporary social conditions [9]. For example, to rethink
design practices, rather than identify a ‘better’ prioritization for
content moderation, we might instead collaborate with users
(intended beneficiaries), content moderators (local experts), and
governments (regulatory institutions) to design a more sus-
tainable and restorative approach to moderating user-generated
content. We might expect social media platforms to treat content
moderation as a primary rather than tertiary concern [2].

Affordance analysis is not mutually exclusive with traditional
learning objectives for Basic Data Structures such as asymptotic
analysis [23]. In fact, we consider it important to study both
of these framings “in tandem” [14] in order to recognize the
various past, present, and future purposes and limits of CS
education [28]. Asymptotic analysis can also be a critical
algorithm analysis: the demand for efficient algorithms and
computation centralizes hegemonic power in technosocial elites.
But it is important to recognize that, historically, CS education
has sidelined justice-centered framings in favor of cognitive
framings focused on developing students’ knowledge, skills,
and understanding of CS concepts and practices at the cost of
developing students’ disciplinary identities [3, 28, 29].

Affordance analysis expands the definition of algorithm
analysis by foregrounding the affordances embodied within
computational abstractions. As a step toward a more critical
CS education, affordance analysis makes space for the rightful
presence of political struggles in the computing classroom [6].
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