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Abstract—In order to expand opportunities to learn computer 

science (CS), there is a growing push for inclusion of CS concepts 
and practices, such as computational thinking (CT), in required 
subjects like science. Integrated, transdisciplinary (CS/CT+X) 
approaches have shown promise for broadening access to CS and 
CT learning opportunities, addressing potential self-selection bias 
associated with elective CS coursework and afterschool programs, 
and promoting a more expansive and authentic contextualization 
of CS work. Emerging research also points to pedagogical 
strategies that can transcend simply broadening access, by also 
working to confront barriers to equitable and inclusive 
engagement in CS. Yet, approaches to integration vary widely, and 
there is little consensus on whether and how different models for 
CS and CT integration contribute to desired outcomes. There has 
also been little theory development that can ground systematic 
examination of the affordances and tradeoffs of different models. 
Toward that end, we propose a typology through which to examine 
CT integration in science (CT+S). The purpose of delineating a 
typology of CT+S integration is to encourage instantiation, 
implementation, and inspection of different models for 
integration, and to promote shared understanding among learning 
designers, researchers, and practitioners working at the 
intersection of CT and science. For each model in the typology, we 
characterize how CT+S integration is accomplished, the ways in 
which CT learning supports science learning, and the affordances 
and tensions for equity and inclusion that may arise upon 
implementation in science classrooms. 

Keywords—Equity and inclusion in computing, Computational 
thinking, Transdisciplinary (CT+X) curriculum models.  

I. INTRODUCTION  
Computation has become critical to an ever-broadening list 

of disciplines, from science to social studies. However, the 
growing role of computing in academic and workforce pathways 
risks further deepening persistent inequities in participation: 
female-identifying, Black, Latinx, and Native American 
individuals remain markedly underrepresented in CS pathways 
[1]. In an effort to broaden participation and address the self-
selection bias associated with elective CS coursework and 
afterschool programs [2], there is a growing push for inclusion 
of CS concepts and practices in required subjects like science [3, 
4, 5]. This integrated approach not only holds promise for 
broadening access to instruction, but it also better reflects the 

transdisciplinary nature of the contemporary and 
computationally-enabled STEM profession [6] and can promote 
learning in integrated disciplines [7, 8, 9, 10, 11, 12, 13]. 

While there is broad support for and notable exemplars of 
transdisciplinary integration of CT learning in core academic 
courses—including in formal science courses—approaches to 
integration vary widely, and there is little consensus on whether 
and how different models for CT integration in science (CT+S) 
contribute to desired outcomes. Progress requires attention to 
two key concerns. First, CT+S learning experiences cannot 
accomplish broader participation in CS pathways if they are not 
successfully taken up at scale; therefore, a comparison of 
different CT+S models must attend to factors that promote broad 
implementation. Second, there is an emerging consensus in 
STEM education that to inspire a broader array of students 
toward CS, educators, curriculum designers, and researchers 
must not only expand access, but must also confront barriers to 
more inclusive student engagement. 

II. A TYPOLOGY FOR CT+S INTEGRATION 
We propose a typology of CT+S instructional models (Fig. 

1) that helps to reveal affordances and challenges of particular 
models for cultivating desired outcomes, and to promote 
continued discussion about how CT+S models may be 
implemented in practice. Our typology emerges from ongoing 
work by the authors across multiple studies examining the 
design, implementation, and outcomes of CT+S curricula and 
pedagogical approaches, including two NSF-funded projects 
(see DRL#s 1657002 and 1838992). Thus, the typology is 
informed by interviews with dozens of science teachers and 
school district administrators, ongoing partnerships with 
districts at the vanguard of implementing CS/CT+X curricula, 
as well as collaborations with colleagues similarly working at 
the intersection of CS and science. Finally, because the typology 
can describe instruction at different grain sizes (e.g., complete 
instructional units as well as individual learning experiences), 
models within the typology are not mutually exclusive and can 
often occur in combination. Insofar as they represent approaches 
that can confront distinct barriers to equitable and inclusive CS 
education, it may be advantageous to draw on multiple models 
within the typology to design CT+S curricula. 
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A. Synergistic Integration 
This model of CT+S integration refers to instructional 

sequences in which CT learning and science learning occur 
simultaneously and synergistically—that is, students build CT 
understanding alongside disciplinary science understanding 
such that their intellectual work requires engagement with both 
domains. As such, learning experiences mirror the work of 
STEM professionals, such as computational biologists, who 
investigate phenomena salient to their discipline not simply by 
using computational tools, but by translating those phenomena 
in ways that are amenable to such tools, and/or developing and 
refining computational tools to better serve investigation of 
disciplinary phenomena.  

An emphasis on disciplinary understanding is a defining 
characteristic of the synergistic model of CT+S integration. 
Moreover, with synergistic CT+S approaches, CT learning and 
disciplinary science learning occur reciprocally [6], in service of 
one another in real time. Thus, as students learn to use, modify, 
or create computational artifacts, science concept(s) are 
necessary to create, evaluate, or make sense of the code (or the 
rules of the computational tool). Put another way, you need the 
science to make sense of the code, and you need the code to 
advance understanding of the science. As such, the CT learning 
helps support students in building, deepening, or consolidating 
their understanding of standards-aligned science concepts [7, 8, 
9, 10, 11, 12, 13]. For example, in one learning sequence we are 
investigating, students code a dynamic computational model 
that accurately represents the effects of different environmental 
factors (e.g. temperature increase, ocean acidification, etc.) on 
populations in a coral reef ecosystem. In the lesson sequence, 
students’ implement control structures in a block-based coding 
language such that the conditions that must be met for a specific 
output to occur in the computational model emerge directly from 
the biological relationships among coral, predators, competitors, 
and abiotic environmental threats to the ecosystem. 

B. Alternating Integration 
The alternating model of CT+S integration refers to 

instructional sequences in which CT learning and science 
learning take turns in time and instructional focus: student 
learning is focused on science concepts, and then on CT 
practices. In collaborative learning contexts, alternating 
integration may be characterized by a divide and conquer 
approach wherein some students focus primarily on the CT 
aspects of the problem space while others focus on the science 
aspects. The STEM workplace analogue to alternating 
integration may be seen in interdisciplinary projects in which the 

tasks can be distributed according to expertise, and the expertise 
remains with the disciplinary representative on the team—the 
programmer programs and the scientist investigates. 

As with synergistic integration, alternating integration is 
characterized by accountability to the disciplinary science 
concepts that a teacher at that grade is expected to address, and 
also includes meaningful CT learning experiences. That is to 
say, in both synergistic and alternating integration there are 
extended learning opportunities with both content areas. The 
distinction between synergistic and alternating models rests in 
the nature of the cognitive work in which students are engaged. 
To what extent is the CT and science disciplinary learning in 
service of one another in a given activity? To what extent are 
students building understanding of disciplinary science content 
and CT practices in concert? For alternating integration, while 
students’ intellectual work in the two domains may be related or 
of the same topic (e.g., space, or ecosystems), the work can be 
accomplished by engaging with each domain independently, or 
in turn. In contrast with synergistic integration, however, the 
science learning does not explicitly engage computational 
thinking, and the programming requires little science 
understanding to successfully accomplish. As an example, a 
student may apply science knowledge to determine the criteria 
for a robotic bee that can pollinate flowers (e.g., how much 
pollen to collect, from which plants, and how much to distribute, 
and to which plants); that student (or another student) then 
applies knowledge of a programming language to program the 
bee bot according to the criteria.  

C. Practice-forward Integration 
Practice-forward CT+S integration aims to integrate CT in 

science courses through connections between CT and other 
science and engineering practices (SEPs), such as scientific 
modeling and data analysis, long-recognized as core epistemic 
practices in science, and emphasized in science standards [14, 
15]—and accordingly, in science classrooms. In fact, there is 
growing recognition that these science practices afford facile 
and authentic integration with CT learning [12, 16, 6].  

With a practice-forward approach, students may have 
extended opportunities to engage with CT alongside deep 
engagement  with a disciplinary practice. As a result,  practice-
forward CT+S learning experiences focus on developing facility 
with the SEPs and less so on building conceptual understanding 
of the phenomenon underlying the investigation. For example, 
in a practice-forward learning sequence we are studying, 
students interact with a national air quality dataset using code to 

 
  Fig. 1. Summary: Typology of Models for Computational Thinking in Science (CT+S) Integration 



query, filter, explore, and create visualizations of the data. Over 
the course of the lesson sequence, students gain exposure to data 
science practices and experience with the underlying 
computation involved in analyzing and creating visualizations 
from large datasets. Students are not expected, however, to 
develop a mechanistic account of the sources of pollution or the 
science of how it impacts living things. 

D. Issue-forward Integration 
The  issue-forward approach to CT+S integration makes use 

of compelling socioscientific issues to motivate CT+S learning. 
This model often involves situating the CT and science ideas 
inside a problem context in which those ideas matter to students, 
as well as to scientists and science practitioners. The focus on a 
driving problem for inquiry aligns with recent calls for 
phenomena-centered learning [17]. It also draws on problem-
based science approaches to student engagement in science 
classrooms [18, 19, 20, 21], in which compelling, real-world 
problems provide the context for inquiry, knowledge 
construction, and application. Importantly, positioning coding in 
service of addressing real-word problems also reflects research-
based strategies [e.g., 22, 23, 24, 25, 26] aimed at confronting 
barriers to broader participation in CS, for example, through 
confronting perceptions that coding is of limited value or 
relevance to solving real-world problems [27, 28, 29]. 

In this model of integration, the socioscientific issue is 
integral to student engagement with (both CT and S) content. In 
other words, the issue drives student learning. For example, 
disease transmission represents a current and pressing 
socioscientific issue that could ground issue-forward 
integration. Students can build and apply CT knowledge to 
manipulate relevant variables (e.g. infection rate, vaccination 
rate), with less explicit attention to the biology of host-virus 
interactions (e.g., viral replication mechanisms inside host 
cells). This model stands in contrast to approaches in which 
students learn domain content in school-bound ways, and are 
then presented with real-world connections at the periphery.  

III. DISCUSSION: CONSIDERATIONS FOR EQUITY 
A core impetus driving integration of CT into required 

academic courses such as science is to broaden participation in 
CS pathways by expanding access to CT learning opportunities 
for students underrepresented in CS. A growing body of 
research also makes clear that inspiring a broader array of 
students toward CS will also require explicit attention to 
designing more inclusive learning environments. In the 
following section, we discuss the different models’ affordances 
and challenges for centering equity at the intersection of CT and 
science learning (Fig. 2). 

A. Affordances for equitable CT+S integration 
The synergistic and alternating models both hold promise for 

expanding access to CT+S learning beyond self-selected 
students: at a minimum, these models squarely attend to 
disciplinary science content standards, a critical criterion for 
scalable uptake in science classrooms. The synergistic model, in 
particular, foregrounds the reciprocal, transdisciplinary learning 
of science and CT [6]. This can serve, in turn, to promote a more 
expansive and authentic contextualization of CS and support 

system-level efforts aimed at better preparing youth for 21st 
century academic and career pathways [30, 31].  

Within the CT+S typology, both practice-forward and issue-
forward models offer clear pathways for drawing on students’ 
lived experiences and cultural and community funds of 
knowledge. Learning experiences that connect to and build from 
students’ interests, cultural knowledge, and lived experiences 
can enable students to bring their own voices into the learning 
environment [31, 32, 33, 34, 35, 36]. Further, positioning 
learning in service of addressing meaningful real-world 
problems can confront negative perceptions that CS work is of 
limited social value [22, 23, 24, 25]. This is readily apparent for 
the issue-forward model in that it fits within a broader paradigm 
of socioscientific issue-driven approaches that specifically seek 
to address the personal dimensions of learning, “placing 
scientific knowledge and its uses squarely within our and our 
students’ social, political, and cultural lives [38].” Similarly, 
because the practice-forward integration model is relatively 
agnostic about the concepts and phenomena with which students 
engage, it may also create opportunities for positioning coding 
as a tool that can be applied to contexts that are responsive to 
students’ ideas, experiences, and interests. For example, in the 
practice-forward learning sequence on air quality described 
above (section IIC), the national scope of the massive dataset 
enables place-based customization of instruction as students 
investigate air quality in their community and compare it to other 
areas of the United States. Throughout the lesson sequence, 
students also freely explore datasets about high-interest topics 
that are more familiar to students (e.g., music, sports), and build 
or apply their developing facility with data practices to make 
sense of the attributes and patterns in the dataset(s) they chose 
to analyze.  

Depending on how they are designed, integrative approaches 
may therefore enable students to move beyond receptive 
knowledge ‘for school’ (I know something important in science 
class) to productive knowledge (I can explain something of 
significance in the broader world). Moving beyond the 
traditional “science for school” stance permits a more expansive 
and inclusive epistemic and discursive repertoire that can 
promote broader, more equitable participation in STEM [39, 40, 
41, 42]. Similarly, these models may support multiple entry 
points for learners with different wells of expertise and interest, 
and the potential to leverage their respective expertise along the 
way to advancing understanding of less familiar domains. 

B. Challenges for equitable CT+S integration 
Engaging students in socioscientific issues often requires 

explicit attention to the underlying science concepts that enable 
youth to meaningfully engage with the broader social problem: 
a social issue may be readily understandable on the surface, yet 
engaging with the science of it may require extensive, beyond-
grade-level content. Thus, we have found it critical to select 
issues with this concern in mind, and support the learning of 
underlying science concepts where that background knowledge 
cannot be assumed. A related difficulty for both synergistic and 
alternating integration models is that each domain introduces its 
own unique challenges for accessing instructional material. 
While learning may be reciprocally supportive [6], it can also 
present impediments for students who have not had positive 



experiences with one or both domains. Alternating models, in 
particular, can magnify divisions of expertise (real and 
perceived) such that “science kids” gravitate toward the science 
content and “tech kids” gravitate toward the computational 
work. Thus, without explicit attention to this possibility, the 
integrated instruction may do little to support students to reach 
beyond their comfort zones and engage with the less familiar 
discipline, potentially magnifying inequities that already exist 
and/or foreclosing on opportunities for self-efficacy in one 
domain to bootstrap learning of another. Thus, because students 
arrive at integrated learning experiences at different points of 
expertise with respect to each of the domains, it seems critical to 
provide adequate support for students to elicit and leverage their 
current areas of expertise while simultaneously supporting them 
in developing facility with concepts and practices with which 
they may be less comfortable.  

The practice-forward CT+S model leverages connections 
between CT learning and science and engineering practices 
(SEPs) emphasized in science standards [14, 15]. However, 
while CT is explicitly called out in national science standards, 
our conversations with teachers and district administrators 
across multiple projects suggest that CT does not yet 
consistently carry adequate face-validity for science teachers 
and districts to warrant extensive instructional time. This may 
be because few science teachers have had prior experience 
teaching CT, and the nascent state of broad integration of CT in 
science contexts offers slim guidance to science teachers to 
support deep pedagogical expertise for engagement with CT [43, 
44]. Accordingly, our experiences developing CT+S 
instructional sequences echo growing recognition in the field 
that CT+S approaches are well-served when they integrate with 
SEPs long accepted as core epistemic practices in science (e.g., 
scientific modeling and data analysis) [12, 6, 16]. These core 
practices meet the needs of science classrooms to enable broad 
use, and importantly, bridge to and deepen familiar wells of 
expertise for science teachers. An important consideration for 
implementation, however, is that deep engagement with core 
science practices in conjunction with CT (e.g. working with big 
data, developing runnable scientific models with ground 
truthing) requires instructional time as well as educative 
supports for teachers. Instructional time may also need to be 
devoted to aspects of the practices themselves, for example deep 
attention to the nature and purpose of scientific models [45], or 
to reasoning about data [46]. Finally, even where CT is 
connected to more familiar disciplinary practices, practice-

forward integration may still be met with skepticism if “content” 
is thin or if science concepts lie outside the standards.  

The alternating CT+S model allows for depth of learning in 
both CT and S but lessens the demand for explicit synergy 
between the two content areas, thus affording a greater variety 
of options across their union. Still, there are tradeoffs: learning 
experiences in which disciplinary and CT learning are less 
tightly synthesized are less likely to disrupt subject area silos of 
expertise among students or to facilitate transdisciplinary 
learning that supports engagement with the “grand challenges” 
in contemporary computational science [47]. An additional 
challenge for implementation of the alternating integration 
model is the instructional time required to support students in 
drawing productive connections between CT and science 
learning. Touching back on the example of students coding the 
simulated pollination movements of bees discussed in section 
IIB, students may build disciplinary understanding of ecosystem 
interdependence in lessons focused on science concepts, yet 
only attend to superficial aspects of these concepts (e.g. the 
distance moved by the bee, or the position of differently colored 
flowers) when engaged in CT learning. Because engagement in 
each domain is temporally and/or conceptually distinct, care 
must be taken in the design of alternating CT+S curricula to 
promote synthesis and sensemaking at the intersection of 
domains so that students perceive science and CT learning as 
integrated—in service of one another, as opposed to disparate 
activities connected through mere temporal adjacency. 

C. Conclusion 
The typology of CT+S models is intended to serve as a tool 

to advance continued research, design, and implementation of 
integrated (CT+S) curricula that center equity for all students. 
As a research object, the typology provides a way to map the 
terrain of CT+S efforts,  a starting place for the field to 
investigate and refine the boundaries of different integrated 
(CT+X) models, and further illuminate their affordances and 
limitations for inclusive and equitable learning. The typology 
offers evaluators a way to clarify a project’s theory of action and 
expected outcomes, and provides curriculum developers with a 
starting place to consider alignment between learning goals and 
instructional design. For practitioners, including classroom 
teachers and district curriculum leads, the typology offers a 
framework to interrogate commercial offerings and align local 
initiatives with desired outcomes. 

 
  Fig. 2. Affordances and Challenges of Integrated CT+S Models for Centering Equity in Science Classrooms 
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